Approximating Covering Integer Programs with Multipli ityConstraintsStavros

نویسنده

  • Stavros G. Kolliopoulos
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rounding to an Integral Program

We present a general framework for approximating several NP-hard problems that have two underlying properties in common. First, the problems we consider can be formulated as integer covering programs, possibly with additional side constraints. Second, the number of covering options is restricted in some sense, although this property may be well hidden. Our method is a natural extension of the t...

متن کامل

Tight Approximation Results for General Covering Integer Programs

In this paper we study approximation algorithms for solving a general covering integer program. An n-vector x of nonnegative integers is sought, which minimizes c ·x, subject to Ax ≥ b, x ≤ d. The entries of A, b, c are nonnegative. Let m be the number of rows of A. Covering problems have been heavily studied in combinatorial optimization. We focus on the effect of the multiplicity constraints,...

متن کامل

Distributed Combinatorial Optimization – Extended Abstract

Approximating integer linear programs by solving a relaxation to a linear program (LP) and afterwards reconstructing an integer solution from the fractional one is a standard technique in a non-distributed scenario. Surprisingly, the method has not often been applied for distributed algorithms. In this paper, we show that LP relaxation is a powerful technique also to obtain fast distributed app...

متن کامل

Approximating Sparse Covering Integer Programs Online

A covering integer program (CIP) is a mathematical program of the form: min{cx | Ax ≥ 1, 0 ≤ x ≤ u, x ∈ Z}, where A ∈ R ≥0 , c, u ∈ R n ≥0. In the online setting, the constraints (i.e., the rows of the constraint matrix A) arrive over time, and the algorithm can only increase the coordinates of x to maintain feasibility. As an intermediate step, we consider solving the covering linear program (...

متن کامل

Lower Runtime Bounds for Integer Programs

We present a technique to infer lower bounds on the worstcase runtime complexity of integer programs. To this end, we construct symbolic representations of program executions using a framework for iterative, under-approximating program simplification. The core of this simplification is a method for (under-approximating) program acceleration based on recurrence solving and a variation of ranking...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000